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Abstract
Thermal control of solid freeform fabrication processes is critical for obtaining consistent

build conditions and in limiting residual stress-induced tolerance losses.  In this paper,
thermomechanical models are presented for the building of thin-walled structures by laser-based
SFF processes.  The simulations are used to develop two non-dimensional plots (termed process
maps) that quantify the effects of changes in wall height, laser power, deposition speed and part
preheating on melt pool size (for consistent build conditions) and thermal gradients (for limiting
residual stresses).  Mechanical simulations are used to demonstrate the link between thermal
gradients and maximum final residual stresses.  Models are applied to the Laser Engineered Net
Shaping (LENS) process; however, the general approach, insights and conclusions are applicable to
most SFF processes involving a moving heat source.  The two process maps described herein can be
used together to determine optimal process variables for obtaining consistent melt pool length while
limiting residual stress in the part.  Results from the residual stress simulations also identify two
important mechanisms for reducing residual stresses and quantify maximum stress reductions that
can be achieved through manipulation of all process variables.

Nomenclature
T =  temperature Tm =  melting temperature
Tbase=  base plate and wall preheat temperature Ttop =  top surface temperature
k =  thermal conductivity ρ =  density
t =  wall thickness c =  specific heat
L =  wall length h =  wall height
Q =  laser power l =  melt pool length
α =  fraction of laser power absorbed by the wall V =  travel speed of laser

Introduction
Residual stress-induced tolerance loss is a concern in nearly all solid freeform fabrication

(SFF) processes.  This includes processes based on successive curing of polymers as well as those
based on successive thermal deposition of polymers or metals.  In using SFF processes for rapid
prototyping, some tolerance loss due to residual stresses is generally acceptable; however, many
targeted applications for using SFF processes as rapid manufacturing techniques (to create
functional parts) have strict dimensional limits.  Residual stress-induced deformation is also
becoming a greater concern as SFF processes are used to build large parts, where larger part
dimensions naturally lead to larger dimensional losses.

A critical issue in developing SFF processes as rapid manufacturing techniques is the
alteration of the processes to control residual stresses while maintaining optimal deposition
conditions.  In this research, two non-dimensional plots (termed process maps) are presented, which



are developed from numerical models of laser-based material deposition of thin-walled structures.
These process maps show the effects of changes in laser power, deposition speed, part preheating
and wall height on two process parameters.  They are melt pool length, which has been identified as
a critical parameter for maintaining optimal build conditions, and a defined temperature gradient,
which can be linked to the final maximum stress in the part.

The principal application of this work is to the Laser Engineered Net Shaping (LENS)
process under development at Sandia National Laboratories [1].  In the LENS process, parts are
constructed by focusing a high-power laser beam onto a metal substrate, where streams of metallic
powder are simultaneously injected.  The laser locally melts the powder to form a molten pool on
the top surface of the growing part.  By moving the laser beam, parts are built up, line by line and
layer by layer.  Work is underway at Sandia Labs to not only optimize process parameters
manually, but to use real-time thermal images of melt pool size as a feedback mechanism to control
the process [2].  Process maps presented in this paper have been developed to aid in both manual
and automated process control efforts.  Although this research is directed toward the LENS process,
the approach taken is applicable to any solid freeform fabrication process involving a moving heat
source, and many of the conclusions are relevant to all SFF processes involving thermal deposition
of metals.

Geometry Considered, Numerical Model and Non-Dimensional Variables
Geometry Considered:  In the current study, the thin-walled structure shown in Fig. 1 is

considered.  Thin-walled geometries of this type are commonly fabricated using the LENS and
other SFF processes.  Also, numerical simulations of a wall of large height, h, with temperature-
independent properties can be verified against an existing analytical solution in the literature [3].  It
is assumed that the thin wall is fabricated by depositing material along a single row; thus, the
thickness of the wall is comparable to the molten melt pool size.  The distance traveled by the laser
and the length of the wall in the x direction are assumed large enough that steady-state conditions
exist independent of the existence of the vertical free surfaces.  It is assumed that the wall is built
upon a large metallic substrate, which acts as a thermal heat sink and mechanically constrains the
wall from deformation during the manufacturing process.  Results presented herein demonstrate
how melt pool length (extent in the x-direction) and final maximum residual stress can be controlled
as a function of wall height, h, absorbed laser power, αQ, laser velocity in the x-direction, V, and
uniform preheating of the wall and base plate to a temperature T = Tbase.

Figure 1.  Thin-Walled Geometry Considered in This Study
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Numerical Model:  The strategy for solving problems of thermally induced residual stress is
to first obtain a thermal solution, then use its temperature predictions as inputs to a mechanical
model.  The thermal models used in this study do not include the effects of convective heat transfer
from the wall free surfaces to the surrounding air and do not model convective flows in the melt
pool itself.  Work by Dobranich and Dykhuizen [4] suggests strongly that the role of these effects in
determining melt pool size is not significant.  The models of this study also model the laser as a
point source of heat, neglecting the distribution of laser power over the melt pool region.  Assuming
a point source of power is reasonable given the goal of this study, which is to capture changes in
melt pool size, temperature gradient and other parameters as a function of changes in the process
variables outlined above.  Accuracy in the absolute predictions is of secondary importance.  It is
shown later in this paper, however, that model predictions for melt pool length still compare
reasonably well with experimentally determined melt pool sizes.

Figure 2.  2-D Thermomechanical Model and Boundary Conditions

The mesh and boundary conditions used for a typical 2-D thermomechanical model of this
study are shown in Fig. 2.  In each set of simulations, the meshes used in both thermal and
mechanical models are identical.  Four-noded bilinear elements are used as part of the ABAQUS
finite element software package.  The laser beam focused on the top surface of the substrate is
simulated by a point source of power subsequently applied at model nodes at a rate simulating the
laser velocity.  Because of high temperature and displacement gradients in the region near heat
source, the grid is biased toward the region that will surround the heat source at the time when
results are to be extracted from the model.  In addition to comparisons of the thermal model with an
analytical solution valid for a large substrate [3], the convergence of this mesh was checked against
thermal and mechanical models with roughly half the resolution in the x and z directions with no
noticeable change in the results.

As illustrated in Fig. 2, in the thermal simulations an insulated boundary condition is
imposed on the top and both vertical sides of the substrate.  The temperature along the substrate
bottom is specified as fixed at a value equal to the temperature of the base plate.  Sensitivity studies
have shown that specifying boundary conditions along the substrate vertical and top surfaces as
being insulated or convective has little effect on thermal results near the heat source.  Most of the
heat transferred from the laser is conducted out through the bottom of the substrate.  By using a 2-D
model, it is also assumed that there is no heat loss through the front and back surfaces of the wall.
In the mechanical simulations, vertical and horizontal displacements are prohibited along the
bottom of substrate.  The remaining boundaries are modeled as traction free.

Thermal and mechanical properties of AISI 304 stainless steel (SS304), which is used in the
LENS and other SFF metal deposition processes, are used as inputs for the thermal and stress
simulations respectively.  Thermal properties were taken from [4] whereas the mechanical
properties were taken from [5].  These properties are comparable to those used by Klingbeil, et al.
[6] in thermomechanical modeling of the Shape Deposition Manufacturing (SDM) process.  The
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properties used in the model that are set to depend on temperature are density, specific heat, thermal
conductivity, Young’s modulus, thermal expansion coefficient and yield stress.  The latent heat of
the liquid-solid phase transition is also included in the model.  Creep is not included in the
constitutive modeling; however, thermomechanical modeling of the SDM process by Chin [7]
indicates that it is not needed to accurately predict room temperature stresses for SS304.  At present,
the authors are investigating the effect of strain hardening; therefore, it is not yet included in the
results presented in this paper.

Non-Dimensional Variables:  A 2-D conductive heat transfer solution for a point heat source
moving across a semi-infinite substrate was first developed by Rosenthal [3].  The temperature
solution and its derivative with respect to Z0 can be expressed in terms of modified Bessel functions
of second kind (K).  Insightful studies of application of this 2-D solution to the LENS process are
given in [8] and [9].  As suggested by the Rosenthal solution, the normalization for melt pool length
for the problem of Fig. 1 can be represented through three dimensionless variables:  the normalized
melt pool length (l ), normalized height of substrate (h ) and the normalized melting temperature
( mT ).  They are defined as follows:
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This normalization scheme is chosen so that results for normalized melt pool length, l , are
presented as a function of normalized wall height, h , and normalized melting temperature, mT .

The temperature gradient (in the Z0 direction) can also be normalized and represented by
dimensionless variables.  At any fixed normalized depth, 0Z , the normalized temperature gradient,
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In fixing the X0 location of the thermal gradient, the dimensionless variable topT  has been chosen

instead of 0X .  This is because it is more physically relevant to use the temperature on the top

surface as one of the criteria for specifying the location for extracting the temperature gradient.
These criteria are discussed later in this paper.

Results for Melt Pool Length

A process map for melt pool length for a thin-walled structure with a concentrated laser heat
source moving across it has been developed and reported in [10] and [11].  The work described in
[10] uses slightly different normalization rules than are used in [11] and herein.  The process map is
shown in Fig. 3, which consists of three surfaces plotted on three coordinate axes.  The middle
surface was developed from several numerical simulations with temperature-independent properties
performed with differing wall heights in order to get the dependence of l  on h .  The dependence of
l  on mT  was then determined from the same simulations by assuming different values of Tm.  The

results from temperature-dependent simulations are also presented in Fig. 3 as the upper and lower
error surfaces that bound the temperature-independent results.  The space between these error



surfaces reflects the range in results seen when process variables are varied over the range of
specific interest in the LENS process.  That range consists of values of αQ from 43.2 to 165 W, V
from 5.93 to 9.31 mm/sec and Tbase from 30° C to 400° C.  The detailed assumptions and procedures
for obtaining and using the process map for melt pool length are given in [11].  In brief, the process
map of Fig. 3 can be used effectively for SS304 deposition within the range of process parameters
of interest in the LENS process by applying the following four rules:

1. Properties at 1000 K are used in the normalization;
2. For cases involving a change in preheat, a linear change in thermal conductivity with a

preheat temperature is assumed, as given in the following equation,
( ) )/(30013.03.24 KmWTk base −+= . (3)

3. For predicting steady-state melt pool lengths due to a change in process variables,
wall thickness is assumed to scale proportionally with melt pool length; and

4. It is assumed that the melt pool length/wall thickness scaling is unaffected by velocity.

Figure 3.  Process Map for Melt Pool Length. Figure 4. Comparison of Predicted and
Measured Melt Pool Lengths

It can be seen from Fig. 3 that at each fixed h , l increases with increasing Tbase or Q (either
of which decreases mT ).  Moreover, a change in Tbase can be compensated for by a change in Q, to

retain a desired melt pool length.  When the wall is relatively tall, h  has no significant effect on l ,
because the wall is tall enough that the effect of the fixed temperature at the base is not seen at the
melt pool.  In contrast, h has a considerable effect on melt pool length when the wall is relatively
short, with l dropping rapidly as h  is reduced.  Melt pool size can also be changed through a
change in laser velocity, V.  This is most easily seen for large values of h  (so that its dependence
on V does not change l ).  Through the normalization scheme used, the actual melt pool length, l, is
given by:
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Thus, for a fixed value of l as determined from the process map, l, is increased by a decrease in V.

Figure 4 provides a comparison of measured melt pool lengths as a function of laser power
and velocity to predictions provided by the process map of Fig. 3 using the rules outlined above.
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The only inputs used to generate the predictions from the process map were a single experimentally
measured wall thickness of t = 1.3 mm for ambient conditions of V = 7.62 mm/sec and αQ = 105 W
(based on an assumed value of α = 0.35 as suggested by Dobranich and Dykhuizen [4]).
Measurements were made using real-time thermal imaging methods described briefly in [2].  The
experimental results presented are for a single set of observations [12] and do not reflect the
variability seen in measured results at nominally identical conditions, which can easily be on the
order of ± 5%.  Because α  is not known precisely, caution is suggested in directly comparing
measured and predicted values in Fig. 4.  However, the predictions of the process map are clearly
capturing the trends in the measured results, which is the goal of this research.

Results for Temperature Gradient
The thermomechanical models used in this study are designed to capture residual stress

magnitudes and to demonstrate their link to defined temperature gradients.  Theoretically, the
second derivative of temperature is the key parameter that controls residual stress.  A linear
temperature field produces identically zero stress throughout a body, provided that all external
restraints are absent [13].  However, for the thin-walled problem considered herein, the temperature
gradient near the top of the wall is directly related to the second derivative of temperature in that
region.  Since the temperature gradient at the top surface is zero, a temperature gradient extracted
from the top portion of the model scales with the average change in gradient between that point and
the top surface.  By using the process map of temperature gradient presented herein, one can extract
the representative normalized temperature gradient for a thin wall for any known values of process
variables.  This normalized temperature gradient can then easily be converted to the actual
temperature gradient, which is the parameter linked to the maximum final residual stress.

Two rules have been established to specify the location for extracting a representative
temperature gradient for a thin-walled structure.  First, the temperature gradient is extracted at a
normalized depth ( 0Z ) equal to 1.2.  This normalized depth has been chosen because it gives the

maximum value of temperature gradient for typical process parameters for the LENS process.  For
different sets of process parameters, the maximum temperature gradient will occur at different
normalized depths.  However, within the range of process variables considered, the variation of this
depth is small.  By fixing the normalized depth, the temperature gradient is simplified to a function
of normalized height of the wall ( h ) and normalized temperature at top surface ( topT ).  The second

rule established by the authors is to extract the temperature gradient at a location behind the heat
source where the temperature on the top surface is 1150 K.  The temperature of 1150 K was chosen
based on results from Chin [7] regarding residual stresses for the SDM process.  That work suggests
that, for SS304, a substantial amount of stress build-up occurs at temperatures below 1150 K.
Residual stress magnitudes are relatively small at temperatures higher than 1150 K.  In addition, a
plot of yield stress vs. temperature for SS304 shows that when the temperature drops below 1150 K,
the yield stress increases significantly.  These facts suggest that the temperature gradients (and their
derivatives) near 1150 K establish the strain mismatches that the thin wall is subjected to, as it
cools, in the temperature range where the yield stress is significantly large.  It is therefore likely that
they are important in determining magnitudes of the final residual stresses.

Using the normalization scheme of eq. [2], the process map for temperature gradient at a
normalized depth 0Z  = 1.2 has been developed and is shown in Fig 5.  Analogous to the process

map for the melt pool length, the process map for temperature gradient presents the dependence of

the normalized temperature gradient, 
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temperature ( TopT ).  The process map was developed from several simulations using temperature-

independent material properties.  Efforts are currently underway to develop a process map for
temperature gradient that includes temperature-dependent properties.

Figure 5.  Process Map for Temperature Gradient Figure 6.  Relation of Maximum Final
Stresses to Temperature Gradient

It can be seen from Fig. 5 that, as in the case of melt pool length, h  has a considerable
effect on the normalized temperature gradient when the wall is relatively short.  Due to the large
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Figure 6 gives results for σmax/σyield as a function of actual temperature gradient from
thermomechanical simulations of a tall wall using five different values of Tbase.  A range of laser
power and velocities is also represented, but the plot does not include values that result in large
thermal gradients.  For these cases deposition onto a room temperature substrate results in
maximum stress values equal to σYield.  The plot clearly shows the dependence of residual stress on
temperature gradient.  For results generated using a base plate temperature of 400 K, it is seen that
different sets of process parameters produce approximately the same maximum stresses in the part
if the representative temperature gradients are matched.  Also, as expected, at a fixed base
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temperature, the residual stresses decrease with decreasing temperature gradient.  This reduction
can be explained as being due to a decrease in strain mismatches during cooling.  As seen in the
plot, the maximum reduction in stress magnitude from the decrease of strain mismatches occurs at
room temperature.  The line at the top of the plot designating room temperature results includes
values of σmax/σyield as low as 0.80, so that the maximum reduction in stress (from σYield) achievable
by this mechanism is approximately 20%.

By comparing the numerical results at different base temperatures, it is clear that uniform
part preheating considerably reduces the residual stress.  Some reduction of residual stress is due to
reductions in strain mismatch, but most of the reductions due to preheating come from reducing the
effective yield stress.  The yield stress of SS304 decreases as the temperature increases.  By
preheating the part, the maximum residual stress is limited by the maximum yield stress.  The
maximum reduction of residual stress by preheating the part is approximately 40% and is achieved
by preheating the part to 400°C.

Thus, in addition to establishing a link between the thermal gradient defined in this study
and maximum residual stresses and quantifying the magnitudes of potential residual stress
reductions, the plot of Fig. 4 identifies two mechanisms behind the reduction of residual stress.  The
first mechanism is the decrease of strain mismatches during cooling as the temperature gradient is
decreased.  This result can be achieved by adjusting laser power and velocity.  The second
mechanism is the reduction of the effective yield stress, which, in turn, reduces the final maximum
residual stress in the part.  The reduction of residual stress seen by part preheating mostly comes
from this second mechanism.

Summary and Implications of the Results
In this study, two process maps have been presented for the building of stainless steel thin-

walled structures by laser-based SFF processes.  The first process map (which is detailed in [11]) is
for predicting or controlling melt pool size, whereas the second process map is for predicting a
normalized temperature gradient, which is linked to maximum residual stress magnitudes.  While
the temperature-dependent results presented in this study are specifically applied to deposition of
SS304 via the LENS process, temperature-independent results and insights from them are
applicable to any SFF process that involves a moving heat source.

Although they are not presented in detail herein, calculations performed with the process
maps described in this study have several major implications relevant to the LENS process and
other similar SFF processes.  First, a considerable change in melt pool length is predicted to occur
for very short walls.  Furthermore, because base plate preheating has a minimal effect on melt pool
size, it does not appear that this change can be compensated for by a base plate preheat alone.  To
obtain an optimal melt pool length for short walls, a change in laser power or laser velocity is
needed.  Residual stress results indicate that for deposition onto a room temperature substrate,
changing laser velocity and power can reduce residual stresses by as much as 20% from the yield
stress.  However, changes in velocity and power will result in significant changes in melt pool size.
Furthermore, if preheating is pursued, the pay-off achieved in changing laser power and velocity to
decrease thermal gradients is reduced.

The biggest pay-off in reducing residual stresses comes from uniform base plate preheating.
The reduction in residual stress that can result from a preheat to 400°C is approximately 40% (from
the yield stress).  At large levels of base plate preheating, the reduction in residual stress is a very
weak function of laser velocity and power.  Thus at large levels of preheat, the full range of power
and velocity can be used with minimal effects on maximum residual stress magnitudes.  Finally,



since preheating does not increase melt pool lengths significantly, any increase in melt pool size due
to preheating can easily be eliminated by a small decrease in laser power or increase in laser
velocity.  In this way, the process maps for melt pool length and temperature gradient presented
herein can be used together to suggest strategies for controlling residual stress magnitudes while
still maintaining an optimal melt pool length.
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